STICK-ON ${ }^{\circledR}$ SERIES
 Model STD Series
 Divider/Combiner Networks

ANYWHERE YOU NEED...

- To Combine Audio Signals to a Single Output
- To Filter RF from an Audio Line
- To Combine Stereo Signals
- To Feed a Mono Signal to Stereo Inputs
- To Combine Multiple Mics to a Single Input

You Need The STD Series!

The STD series of products is part of the STICK-ON line of products from Radio Design Labs. It is a resistive branching network with RF filtering on each of the four channels. Any channel, A through D, may be either input or output. This permits combining stereo signals into mono inputs, splitting mono signals to multiple inputs, and even combining microphones with output shorting switches into a single amplifier input. The STD products are available in $150 \Omega, 600 \Omega$ and $10 \mathrm{k} \Omega$ models. All inputs and outputs are balanced.

STICK-ON ${ }^{\circledR}$ SERIES

 Model STD SeriesDivider/Combiner Networks

Installation/Operation

(ϵEN55103-1 E1-E5; EN55103-2 E1-E4 Typical Performance reflects product at publication time exclusive of EMC data, if any, supplied with product. Specifications are subject to change without notice.

BRANCH A 150 OHM MIC TO MULTIPLE INPUTS

COMBINE MULTIPLE 150 OHM MICS TO SINGLE INPUT

BRANCH A 600 OHM LINE TO 3 INPUTS

FEED MONO SIGNALS TO STEREO INPUTS

A MODULE MAY BE UNBALANCED BY CONNECTING ALL 4 NEGATIVE TERMINALS TO THE ADJACENT GROUNDS. BALANCED AND UNBALANCED WIRING MAY NOT BE MIXED.

TYPICAL PERFORMANCE
Circuit Type:
Circuit Configuration:
Input/Output Impedance:
Number of Inputs/Outputs:
Insertion Loss:
Isolation between Channels:
Maximum Signal Input:

Passive
Balanced
150,600 , or $10 \mathrm{k} \Omega$ as marked
4 Total: Useable in any combination: split 1 in to 3 out; 2 in to 2 out; 3 in to 1 out
3 dB
3 dB (STD products are passive and therefore not intended as isolation devices; use
RDL Mixers or Mixers or Distribution Amps for isolation)
$+28 \mathrm{dBu}($ at 600Ω)
+22 dBu (at 150Ω)

