# COAXIAL CX12N351 Professional Low Frequency Transducer PART NUMBER **11100058** The CX12N351 is a top class coaxial design that provides an excellent frequency response linearity withvery low distortion. The CX12N351 is powered from an integrated high power neodymium magnetic structure that guarantee high dynamic and sensitivity for both components. The mid-bass section features a 3,5" inside-outside voice coil design that provides a very high power handling, especially in comparison to a standard 3" voice coil. Thanks to an integrated demodulation ring the mid-bass section gets a fastest time response and lower distortion. The compression driver use a 2.5" diaphragm with a 1.4" throat featuring several state of the art technologies. The diaphragm and suspension are formed from 0.05 mm thick pure titanium. ## Coax. Features #### MID-BASS DRIVER - 3.5-inch, fibreglass outside aluminum voice coil - 900 Watt continuous program power handling - 98.5 dB Sensitivity - 50 Hz 3.0 kHz Frequency range - Dual-forced air ventilation for minimum power compression - M-roll surround and exponential cone geometry - Demodulation ring #### HF DRIVER - 2.5-inch Diaphragm, 1.4-inch Exit Throat/pure titanium compression driver - 180 Watt Continuous program power handling - Frequency range: 700Hz 20kHz - Direct Drive Voice Coil Assembly - 3-slot, optimised geometry phase plug Aluminum rear cover ## **Applications** The CX12N351 coaxial transducer is ideal in premium quality applications where a perfect radial pattern, low distortion and curve response linearity are required. Perfect in high power stage monitors and compact high power reflex enclosures. | CX12N351 DRIVER | | | |-------------------------|--------------------|---------| | Nominal diameter | 35.5/1.4 | mm/inch | | Rated impedance | 8 | ohm | | Program power | 180 | Watts | | Power handling capacity | 90 | Watts | | Sensitivity 1W, 1m | 110 | dB | | Frequency range | 700 - 20000 | Hz | | Minimum impedance | 7.9 | ohm | | Voice Coil diameter | 63.7/2.5 | mm/inch | | Voice Coil material | Edgewound Aluminum | | | Number of layers | 1- Outside | | | Diaphragm material | Pure Titanium | | | Diaphragm design | Dome | | | Suspension material | Pure Titanium | | | Suspension design | Progressive | | | BL factor | 10.4 | T x m | | Flux density | 2.0 | T | | Phase plug design | 3 slot | | | Phase plug material | Aluminum | | | Magnetics | Neodymium | | | Voice Coil Demodulation | Copper Ring | | #### CX12N351 HORN | Throat diameter | 36/1.4 | |-------------------------|-------------------------| | Nominal coverage (-6dB) | 60° | | Cut-off Frequency | 900 | | Material | Structural Polyurethane | $\label{eq:Frequency (Hz)} Frequency response curve of the loudspeaker make in a hemispherical, free field and mounted in a reflex box with an internal volume of 50 litres and tuned at 60Hz, applying a sinusoidal signal of 2.83 V@8 at 1m.$ Impedance magnitude curve measured in free air. ### **General Specifications** | Nominal Diameter | 300/12 | mm/inch | |--------------------------------------------|--------------------|---------| | Rated Impedance | 8 | ohm | | Program Power <sup>1</sup> | 900 | Watts | | Power handling capacity <sup>2</sup> | 450 | Watts | | Sensitivity <sup>3</sup> | 98.5 | dB | | Frequency Range | 50 - 3000 | Hz | | Effective Piston Diameter | 260/13 | mm/inch | | Max Excursion Before Damage (peak to peak) | 39/1.5 | mm/inch | | Minimum Impedance | 6,8 | ohm | | Voice Coil Diameter | 87/3.4 | mm/inch | | Voice Coil Material | Copper | | | Voice Coil Winding Depth | 16.5/0.65 | mm/inch | | Number of layers | 2 - inside/outside | | | Top Plate Thickness | 11/0.43 | | | Cone Material | No pressed pulp | mm/inch | | Cone Design | Curved | | | Surround Material | Polycotton | | | Surround Design | M-roll | | | Magnetics | Neodymium | | | Voice Coil Demodulation | Aluminum | | ## Thiele - Small Parameters 4 | Resonance frequency | Fs | 58 | Hz | |---------------------------------------------------|------|-------|--------| | DC resistance | Re | 5.8 | ohm | | Mechanical factor | Qms | 5.4 | | | Electrical factor | Qes | 0.21 | | | Total factor | Qts | 0.20 | | | BL Factor | BL | 25 | T · m | | Effective Moving Mass | Mms | 62 | gr | | Equivalent Cas air Ioad | Vas | 47 | liters | | Effettive piston area | Sd | 0.053 | $m^2$ | | Max. linear excursion (mathematical) <sup>5</sup> | Xmax | 5.5 | mm | | Voice - coil inductance @ 1KHz | Le1K | 1.5 | mH | | Half-space efficiency | Eff | 4.4 | % | ### **Mounting Information** | Overall Diameter | 320/12.6 | mm/inch | |--------------------------------------------|-----------------|------------| | Bolt Circle Diameter | 293-304/11.5-12 | mm/inch | | Bolt Hole Diameter | 6.5/0.3 | mm/inch | | Front Mount Baffle Cut-out | 284/11.2 | mm/inch | | Rear Mount Baffle Cut-out | 284/11.2 | mm/inch | | Depth | 144/5.66 | mm/inch | | Volume occupied by the driver <sup>6</sup> | 2.2/0.87 | liters/ft3 | ## **Shipping Information** | Net Weight | 5.9/13 | Kg/Lbs | |-----------------|----------|--------| | Shipping Weight | 6.7/14.7 | Kg/Lbs | #### Notes to Specifications 1 Program Power is defined as 3 dB greater than AES power. - 2 AES standard. - 3 Sensitivity measurement is based on a 500-2,5 kHz pink noise signal with input power of 2.83V @ 8 Ohms. - 4 Thiele-Small parameters are measured after a 2 hour warm up period running the loudspeaker at full power handling capacity. - 5 The maximum linear excursion is calculated as: (Hvc - Hg)/2 + Hg/4 where Hvc is the voice coil depth and Hg the gap depth. - 6 Calculated for front mounting on 18 mm thick board.