TRX121T/6 Loudspeakers

Frequency Response: 65 to 18 kHz
Dispersion: 90° H by 60° V
Sensitivity: 126 dB program, 132 dB peak
Dimensions: 26 1/2" H x 29 1/2" W x 16 1/2" D (67.3 cm x 73.7 cm x 41.9 cm)
Weight: 90 Lbs. (40.8 kg) with hanging hardware

T12/6-3(T) 3-Wide Reference Point Array

A complete T12/6-3(T) Reference Point Array consists of:
3 TRX121T/6 Full-range loudspeakers
1 RHANG12-3 Hanging hardware
Interconnecting cables, system preparation & testing
Frequency Response: 65 to 18 kHz
Dispersion: 120° H by 60° V
Sensitivity: 129 dB program, 132 dB peak
Dimensions: 26 1/2" H x 39 1/4" W x 17 1/2" D (67.3 cm x 99.7 cm x 44.5 cm)
Weight: 138 Lbs. (62.6 kg) with hanging hardware

T12/6-4(T) 4-Wide Reference Point Array

A complete T12/6-4(T) Reference Point Array consists of:
4 TRX121T/6 Full-range loudspeakers
1 RHANG12-4 Hanging hardware
Interconnecting cables, system preparation & testing
Frequency Response: 65 to 18 kHz
Dispersion: 160° H by 60° V
Sensitivity: 132 dB program, 135 dB peak
Dimensions: 26 1/2" H x 45 1/2" W x 21 1/2" D (67.3 cm x 115.6 cm x 54 cm)
Weight: 184 Lbs. (83.5 kg) with hanging hardware

Uncompromised Performance - Unequaled Versatility

T12 series Reference Point Arrays use advanced technology and application-driven engineering to bring live sound closer to the ultimate reference point: reality. The process produces fully integrated electro-acoustic systems with signal processing, amplification, flying hardware and cabling all optimized to deliver superior fidelity and coverage.

Wherever the superior performance demanded by the audiences and operators cannot be met with a single loudspeaker, T12 series Reference Point Arrays are the choice for reference quality performance.

Applications
- Virtually any application where outstanding sonic performance is required and sound level and coverage needs cannot be satisfied with a single loudspeaker.
- Sound reinforcement systems in Houses of Worship, Performing Arts Centers, Sports Arenas, Theaters and other similar venues.
- Large Audio Visual playback systems.

Advanced Complex Conic Horn Design

Designed around the spherical expansion of the acoustic pressure wave, Complex Conic horns provide constant beamwidth/directivity without the problems of conventional rectangular horns. With extended pattern bandwidth, lower distortion and minimal coloration, Complex Conic horns work better and sound far more natural than ordinary horns.

RPA Reference Point Arrays

The RPA process integrates loudspeakers, electronics, cabling and hardware to produce “plug ‘n play” arrays that act as a single broadband acoustic source, assuring consistent performance while reducing installation and commissioning time.

TRAP (True Array Principle) Design

TRAP array module horn angles and enclosures are designed to place the acoustical centers as close together as physically possible. This practically eliminates interference between adjacent loudspeakers that combine seamlessly to produce a phase aligned wavefront having an absolute minimum of lobing. The result is no more “hot spots”, no more “dead spots.”
No matter how good a single conventional loudspeaker sounds, once it is used in a cluster or array, interaction with its neighboring loudspeakers produces undesirable lobing or comb filtering - which creates a profusion of "hot spots" and "dead spots" in the overlap areas, along with disturbing variations in frequency response from one location to another.

Electronics can improve the performance of any array. But only TRAP loudspeakers are engineered from the inside out to produce a single source of sound even in large arrays. The reason ordinary loudspeakers can't help interfering with each other in clusters is that their acoustic centers are widely spaced.

That's why we designed TRAP horns and enclosures to align the acoustic centers. The horn angles are matched to the trapezoidal enclosures, which are designed to place the drivers as close together as physically possible. All sound originates from the same spot, so interference between adjacent horns is practically eliminated.

Arrays of TRAP loudspeakers produce a phase aligned wavefront with uniform frequency response across the coverage area. Below the horn's cutoff frequency, RPA signal processing eliminates low frequency interference and can improve pattern control. The result is great sound at every seat -- no more "hot spots" and "dead spots" in the overlap areas and disturbing variations in frequency response from one location to another.

Electronics can improve the performance of any array. But only TRAP loudspeakers are engineered from the inside out to produce a single source of sound even in large arrays. The reason ordinary loudspeakers can't help interfering with each other in clusters is that their acoustic centers are widely spaced.

That's why we designed TRAP horns and enclosures to align the acoustic centers. The horn angles are matched to the trapezoidal enclosures, which are designed to place the drivers as close together as physically possible. All sound originates from the same spot, so interference between adjacent horns is practically eliminated.

Arrays of TRAP loudspeakers produce a phase aligned wavefront with uniform frequency response across the coverage area. Below the horn's cutoff frequency, RPA signal processing eliminates low frequency interference and can improve pattern control. The result is great sound at every seat -- no more "hot spots" and "dead spots" in the overlap areas and disturbing variations in frequency response from one location to another.

TRAP loudspeakers work together to produce a coherent wavefront.

Conventional Cluster Performance

TRAP (True Array Principle) Cluster Performance

Reference Point Arrays

Cut the complexity of working with multi-speaker clusters until they're as easy to work with as a single loudspeaker. That's the concept driving Renkus-Heinz engineering as we develop each new Reference Point Array (RPA).

When the entire system comes from one source, it can function as a single acoustic source. RPA integrated systems engineering expands on our proprietary True Array Principle (TRAP) that practically eliminates interference between adjacent horns. Complex Conic horns provide constant beamwidth/ directivity without the problems of conventional horns.

We control the location and orientation of each array element with purpose-designed, precision R-Hang hardware. At our automated test and measurement facility, we dial in the parameters for Array-Specific Processing, optimizing low frequency directionality, wavefront coherency and cluster integration.

We make sure that each carefully processed signal is delivered to the right set of transducers with internal intelligent amplification or rack mount amplifier/controllers with pre-configured wiring.

Before we ship any RPA, the entire array is assembled and its performance verified. When your RPA arrives at the job site, all you do is re-assemble the speakers and hardware. Then plug it in, turn it on and walk the room. Like hundreds of designers, operators, owners and audiences around the world, you'll be delighted with the results.

RPA's are the best example of how advanced technologies, real world experience and intelligent system design can provide both uncompromising audio fidelity and unsurpassed practicality - starting with EASE, which includes single-source data for RPA's. You'll save hours of installation and troubleshooting time, while delivering results that are superior to "handmade" arrays using conventional components.
True Array Principle (TRAP) Design

No matter how good a single conventional loudspeaker sounds, once it is used in a cluster or array, interaction with its neighboring loudspeakers produces undesirable lobing or comb filtering - which creates a profusion of "hot spots" and "dead spots" in the overlap areas, along with disturbing variations in frequency response from one location to another.

Electronics can improve the performance of any array. But only TRAP loudspeakers are engineered from the inside out to produce a single source of sound even in large arrays. The reason ordinary loudspeakers can't help interfering with each other in clusters is that their acoustic centers are widely spaced.

That's why we designed TRAP horns and enclosures to align the acoustic centers. The horn angles are matched to the trapezoidal enclosures, which are designed to place the drivers as close together as physically possible. All sound originates from the same spot, so interference between adjacent horns is practically eliminated.

Arrays of TRAP loudspeakers produce a phase aligned wavefront with uniform frequency response across the coverage area. Below the horn's cutoff frequency, RPA signal processing eliminates low frequency interference and can improve pattern control. The result is great sound at every seat -- no more "hot spots" and "dead spots" in the overlap areas and disturbing variations in frequency response from one location to another.

Reference Point Arrays

Cut the complexity of working with multi-speaker clusters until they're as easy to work with as a single loudspeaker. That's the concept driving Renkus-Heinz engineering as we develop each new Reference Point Array (RPA).

When the entire system comes from one source, it can function as a single acoustic source. RPA integrated systems engineering expands on our proprietary True Array Principle (TRAP) that practically eliminates interference between adjacent horns. Complex Conic horns provide constant beamwidth/directivity without the problems of conventional horns.

We control the location and orientation of each array element with purpose-designed, precision R-Hang hardware. At our automated test and measurement facility, we dial in the parameters for Array-Specific Processing, optimizing low frequency directionality, wavefront coherency and cluster integration.

We make sure that each carefully processed signal is delivered to the right set of transducers with internal intelligent amplification or rack mount amplifier/controllers with pre-configured wiring.

Before we ship any RPA, the entire array is assembled and its performance verified. When your RPA arrives at the job site, all you do is re-assemble the speakers and hardware. Then plug it in, turn it on and walk the room. Like hundreds of designers, operators, owners and audiences around the world, you'll be delighted with the results.

RPA's are the best example of how advanced technologies, real world experience and intelligent system design can provide both uncompromising audio fidelity and unsurpassed practicality - starting with EASE, which includes single-source data for RPA's. You'll save hours of installation and troubleshooting time, while delivering results that are superior to "handmade" arrays using conventional components.
T12/6-2(T) 2-Wide Reference Point Array

A complete T12/6-2(T) Reference Point Array consists of:
- 2 TRX121T/6 Full-range loudspeakers
- 1 RHANG12-2 Hanging hardware

Interconnecting cables, system preparation & testing

Power:
- 500 W program at 8 Ohms

Sensitivity:
- 96 dB (1W/1m)

Max SPL:
- 126 dB program, 132 dB peak

Dispersion:
- 40° H by 60° V

Frequency Response:
- 65 Hz to 18 kHz

Dimensions:
- 26 1/2” H x 15 1/4” W x 13 3/4” D (67.3 cm x 38.7 cm x 34.9 cm)

Weight:
- 160 Lbs. (72.5 kg) with hanging hardware

RPA Reference Point Arrays

The RPA process integrates loudspeakers, electronics, cabling and hardware to produce "plug 'n play" arrays that act as a single broadband acoustic source, assuring consistent performance while reducing installation and commissioning time.

TRAP (True Array Principle) Design

TRAP array module horns and enclosures are designed to place the acoustical centers as close together as physically possible. This practically eliminates interference between adjacent loudspeakers to produce a phase aligned wavefront having an absolute minimum of lobing. The result is no more "hot spots", no more "dead spots."

T12/6-3(T) 3-Wide Reference Point Array

A complete T12/6-3(T) Reference Point Array consists of:
- 3 TRX121T/6 Full-range loudspeakers
- 1 RHANG12-3 Hanging hardware

Interconnecting cables, system preparation & testing

Power:
- 500 W program at 8 Ohms

Sensitivity:
- 96 dB (1W/1m)

Max SPL:
- 132 dB program, 138 dB peak

Dispersion:
- 40° H by 60° V

Frequency Response:
- 65 Hz to 18 kHz

Dimensions:
- 26 1/2” H x 15 1/4” W x 13 3/4” D (67.3 cm x 38.7 cm x 34.9 cm)

Weight:
- 184 Lbs. (83.5 kg) with hanging hardware

Coverage:
- 120° H x 60° V

Weight:
- 90 Lbs. (40.8 kg) with hanging hardware

T12/6-4(T) 4-Wide Reference Point Array

A complete T12/6-4(T) Reference Point Array consists of:
- 4 TRX121T/6 Full-range loudspeakers
- 1 RHANG12-4 Hanging hardware

Interconnecting cables, system preparation & testing

Power:
- 750 W program at 8 Ohms

Sensitivity:
- 96 dB (1W/1m)

Max SPL:
- 132 dB program, 138 dB peak

Dispersion:
- 40° H by 60° V

Frequency Response:
- 65 Hz to 18 kHz

Dimensions:
- 26 1/2” H x 15 1/4” W x 13 3/4” D (67.3 cm x 38.7 cm x 34.9 cm)

Weight:
- 260 Lbs. (118 kg) with hanging hardware

Coverage:
- 160° H x 60° V

Weight:
- 138 Lbs. (62.6 kg) with hanging hardware

TRAP (True Array Principle) Design

TRAP array module horns and enclosures are designed to place the acoustical centers as close together as physically possible. This practically eliminates interference between adjacent loudspeakers to produce a phase aligned wavefront having an absolute minimum of lobing. The result is no more "hot spots", no more "dead spots."

Advanced Complex Conic Horn Design

Designed around the spherical expansion of the acoustic pressure wave, Complex Conic horns provide constant beamwidth/directivity without the problems of conventional rectangular horns. With extended pattern bandwidth, lower distortion and minimal coloration, Complex Conic horns work better and sound far more natural than ordinary horns.

Applications

- Virtually any application where outstanding sonic performance is required and sound level and coverage needs cannot be satisfied with a single loudspeaker.
- Sound reinforcement systems in Houses of Worship, Performing Arts Centers, Sports Arenas, Theaters and other similar venues.
- Large Audio Visual playback systems.

Uncompromised Performance - Unequalled Versatility

T12 series Reference Point Arrays use advanced technology and application-driven engineering to bring live sound closer to the ultimate reference point: reality. The process produces fully integrated electro-acoustic systems with signal processing, amplification, flying hardware and cabling all optimized to deliver superior fidelity and coverage.

Wherever the superior performance demanded by the audiences and operators cannot be met with a single loudspeaker, T12 series Reference Point Arrays are the choice for reference quality performance.

References

- Tel: 949-588-9997
- Fax: 949-588-9514
- Sales@renkus-heinz.com
- www.renkus-heinz.com

© 2008 Renkus-Heinz Inc. reserves the right to change any product specification without prior notification.