

MYTEK DIGITAL.USA

8X192 ADDA

8 CHANNEL MASTERING ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER

USER MANUAL

VER.FEB/2006

This manual may be updated

Download the newest version at:

http://www.mytekdigital.com/manuals/8x192adda_manual.pdf

For technical support, technical tips and support check:

http://www.mytekdigital.com/products/8x192adda.htm

or contact Mytek tech support at:

info2006@mytekdigital.com

or at:

tel. (646)-613 1822 fax.(212)-202 5331

Mytek 151 Lafayette Street 3rd Fl New York NY 10013 USA

OWNER'S RECORD:

The serial number is located on the bottom of the unit. We suggest you record the serial number in the space provided below. The firmware version label is located on the 8 pin emprom chip located in a socket under the top lid. The firmware can be updated and chip replaced by the user if necessary. Please be sure to return your completed warranty card.

8x192 ADDA Serial NO.:

Firmware Version:

Purchase Date:

Dealer/ Contact:

Cards Installed, Serial ##

WARRANTY

This 8X192ADDA digital audio converter is warranted by Mytek to the original purchaser against defects in workmanship and materials used in manufacture for a period of one year from the date of purchase. Faults due to customer misuse, unauthorized modifications or accidents are not covered by this warranty.

No other warranty is expressed or implied.

Any faulty unit should be sent, shipping prepaid, to the manufacturer service center. Prior to shipping the client should obtain from Mytek an RMA# for warranty services. Units sent without RMA# will not be accepted.

Mytek extends affordable repair service for all units manufactured to date that are not covered by this Warranty.

Introduction	5
Signal Flow	6
Block Schematics	7
Back Panel Connections, Cable Wiring	8
Front Panel Controls	9
Input/output Gain and other internal adjustments	10
Setting Clocks and Signal Sources	12
Specifications	16

INTRODUCTION

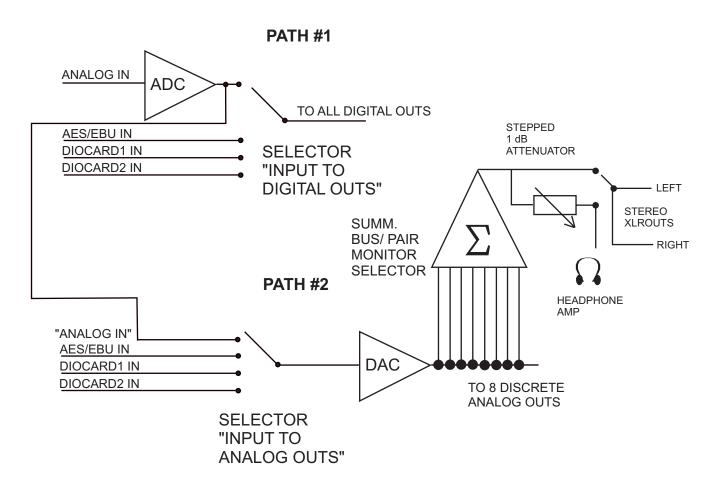
Mytek 8X192 ADDA is an 8 channel Analog to Digital and an 8 channel Digital to Analog converter maticoulsly designed to provide the highest quality signal path. No compromises have been made to sound quality, and we feel that this is the best sounding Mytek converter to date. In trial tests in comparison with other hi-end brands this unit provided the same or better sonic performance, which makes it suitable for the most demanding mastering and recording applications.

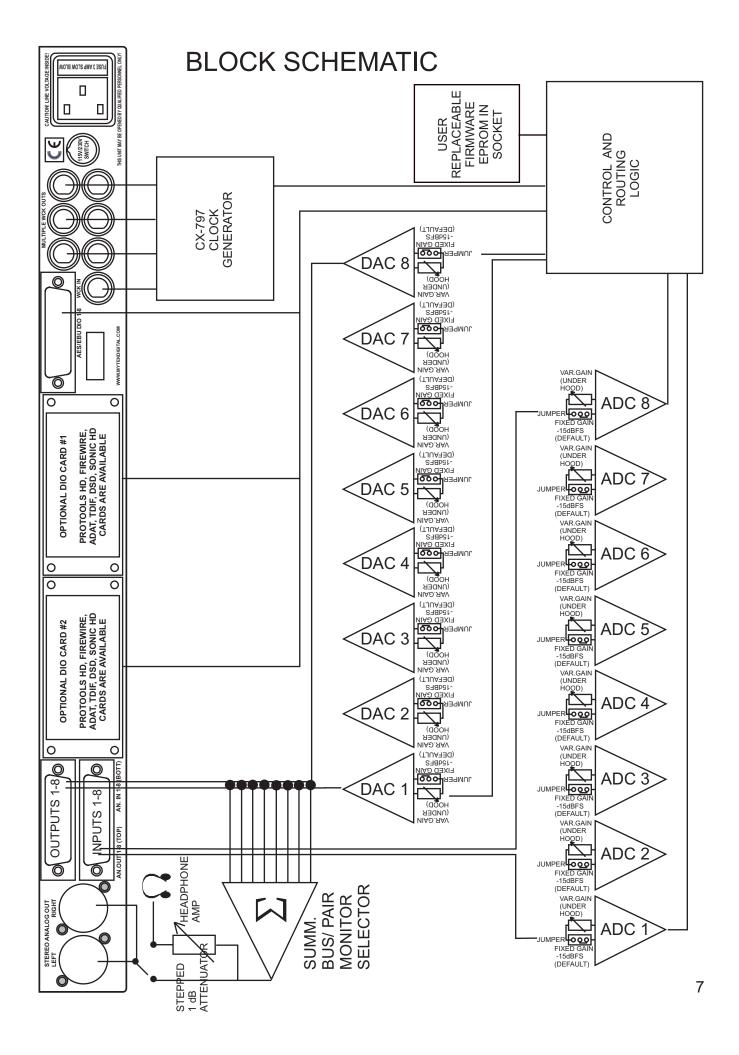
Users choose Mytek converters primarily for their outstanding sonic quality. The sound of Mytek converters can best be described as "transparent". We design our converters to be as faithful to the original signal as possible, rather than adhering the philosophy of some other manufacturers who offer "analog" or "tube" sounding converters. Mytek converters are designed to be as close to a straight wire as possible, which is especially evident when used at full 24/192 or DSD resolution.

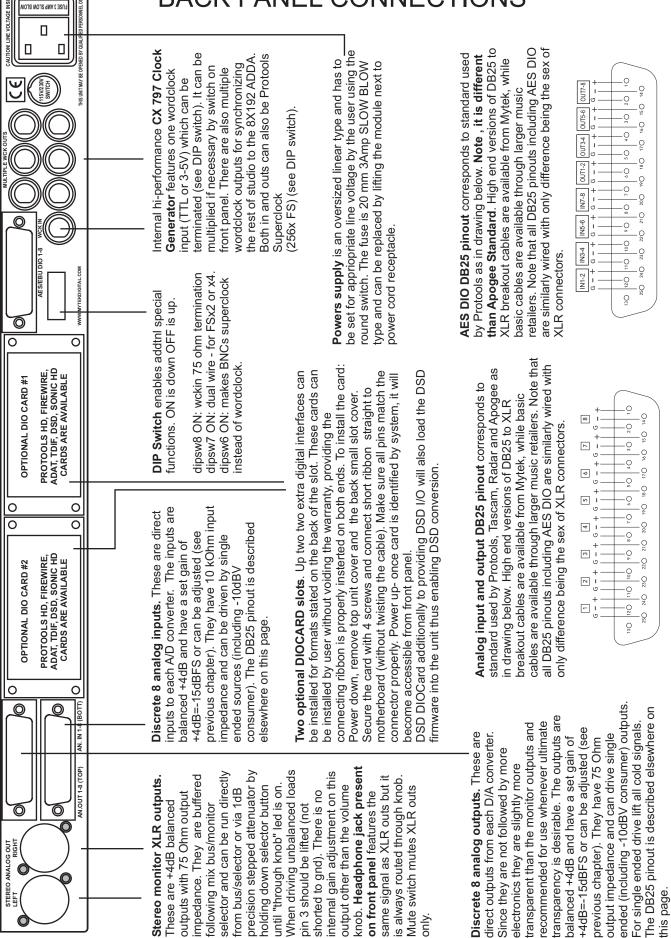
On the Mytek website you can find and download various sound samples to evaluate the 8X192's sound quality and compare it to the sound of other high end converter units. Please log onto: http://www.mytekdigital.com to download samples. Thanks to the wide choice of daughter interface cards (DIO Cards), the 8X192 becomes an 8 channel "digital swiss army knife", which allows the user to adapt converter performance to most studio setups and situations."

In addition to typical converter functions, the Mytek 8X192 features a unique analog mix bus designed with transparency in mind, a monitor section with a mastering grade stepped attenuator, and a hi-end headphone amp.

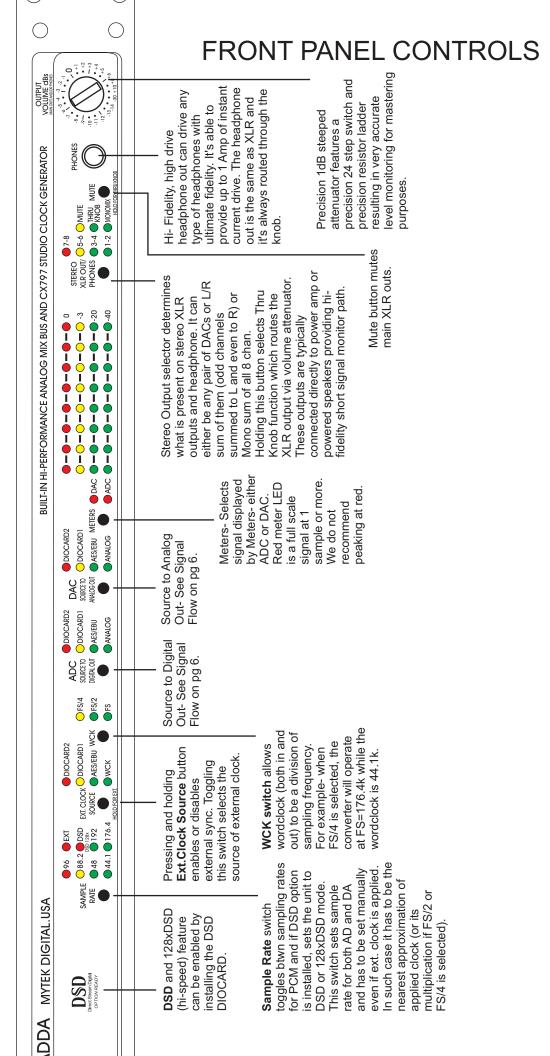
The built in CX 797 clock generator with multiple wordclock outputs is the best source for stable studio house clock, and the 8x192 will perform best using this internal clock.


SIGNAL FLOW


The 8X192 ADDA has two independent signal paths within the unit. They offer independent signal paths but must operate at the same clock source and sampling frequency. It's recommended that as much as possible the unit should be clocked from its internal CX 797 clock generator. This mode offers minimum jitter allowin for the best performance and system stability. Associated equipment should be slaved to 8X192 clock outputs whenever possible. There is no measurable improvement (rather typically a degradation) when the unit is clocked by external clock generator.


1) The first path is built around the ADC converter and essentially defines what input is selected to be sent to digital outputs. All digital outputs are simultaneous, so if the analog input is engaged, the analog signal is converted to digital and sent to all installed digital outputs.

If the digital input is selected, only digital format conversion is performed, and the signal is then passed to the digital outputs. There is no SRC or any kind of digital processing induced. When operating in DSD mode only the inputs and outputs compatible with DSD format are active.


"2) The second signal path is built around the DAC. It defines what signal is present at the analog outputs. The selected digital signal is converted to analog. If the analog input is selected, it's first converted to digital by the ADC and then sent to the DAC and converted back to analog.

BACK PANEL CONNECTIONS

INPUT/OUTPUT GAIN AND OTHER INTERNAL ADJUSTMENTS

Analog input/output alingment

The 8X192 ADDA analog input/output sensitivity comes as factory default fixed at -15dBFs corresponding to +4dB (OVU=1.228VRMS measured between hot and cold). This gain is optimal for most situations and unless another level "is necessary for systemic reasons, we recommend leaving the gain at the default setting. If the gain has to be changed the appriopriate jumpers and trimpots have to be accessed by lifting the top cover. Please review the drawing on following page.

The gain alignment does not affect audio quality, only input/output sensitivity. A small tweaker or screwdriver is necessary. First you have to arbitrarily decide what will be your studio "0 VU" analog/digital reference level. It is usually between -20 and -14dB. It defines how much headroom is left over the normal operating "0 VU" level. You may set it at the same level as other piece of equipment in your studio.

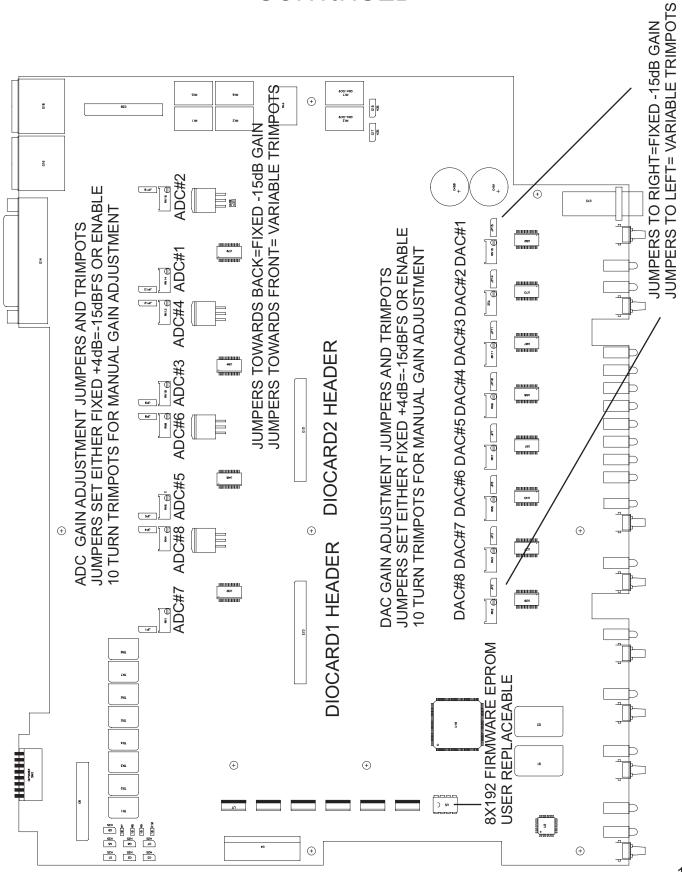
Step 1 - Analog output alignment

1. Play a digital audio source (DAW generator, test CD etc.) set to approx. 1kHz at the peak operating level you have chosen (let's say you have chosen -18dB).

2. Send the signal from the analog output to the console VU meter. If you don't have a VU meter you can use an AC voltmeter set to measure AC RMS values. "0 VU"at + 4dB corresponds to 1.225 Volts RMS measured between pin hot and pin cold of the output signal.

3.Using a tweaker or a small screwdriver adjust the analog outputs until the VU meter reads "0 VU".

4. Repeat the same for all outputs.


Step 2 - Analog input alingment

1.Set the oscillator in your console at 1kHz and "0 VU". Send the oscillator to the 8X192ADDA analog input."0 VU" at + 4dB corresponds to 1.225 Volts RMS measured between pin 2 and 3 of the output XLRs. If you do not have an analog oscillator, you can use a calibrated analog out of a DA converter and generate a sinewave inside the DAW. Alternatively, if you do not have an oscillator you can use the analog outputs you have just aligned as a source of a sinewave at +4dB (generating sinewave digitally as in step 1).

2.Select the "analog input". Connect a digital meter to a digital output. If you don't have a dedicated digital meter use the most precise meter available in you existing digital recording equipment or DAW.

3. Adjust the analog input level to get appropriate reading of the meter (for example -18dB).

4. Repeat the same for all of the analog inputs.

INTERNAL ADJUSTMENTS CONTINUED

SETTING CLOCKING AND SIGNAL SOURCES

1 NORMAL OPERATION. AD AND DA ON INTERNAL CLOCK.

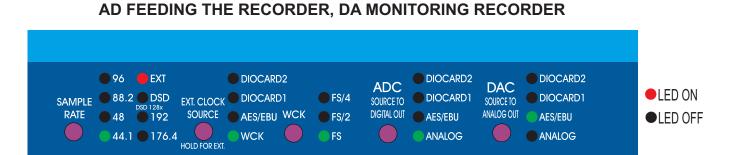
AD FEEDING THE RECORDER, DA MONITORING RECORDER



In this mode both the AD and DA run on the internal clock. This mode provides the lowest jitter and most sonically robust performance. External recorders (such as DAW etc) have to be synchronized either to the AD digital outputs (any format: AES or DIOCARD1 or DIOCARD2) or to the converter Worclock output.

This example shows 44.1 PCM, but any FS can be any selected, including DSD and 128x DSD. Also instead of AES, any other digital input to DA can be selected, depending on the particular system configuration. The unit will output on its BNC outs Wordclock corresponding to the sampling frequency unless it's divided by using WCK button.

If the DA converter receives no selected digital in OR this input is not synchronous with AD clock, the LED will flash and DA converter will mute."


2. FEED THROUGH OPERATION. AD AND DA ON INTERNAL CLOCK. AD FEEDING DA DIRECTLY

In this mode both the AD and DA run on the internal clock. This mode also provides the lowest jitter and most sonically robust performance. External recorders (such as DAW etc) must be synchronized either to AD digital outputs (any format: AES or DIOCARD1 or DIOCARD2) or to the converter Worclock output.

In this mode signal is fed from AD to digital outputs and also to DA directly. This mode may be usefull when conversion latency has to be minimized during the recording. It functionally corresponds to a multitrack tape machine always on "input". This example shows 44.1 PCM, but any FS can be any selected, including DSD and 128xDSD. Also instead of AES any other digital input to DA can be selected depending on particular system configuration. The unit will output on its BNC outs Wordclock corresponding to the sampling frequency unless it's divided by using WCK button. "

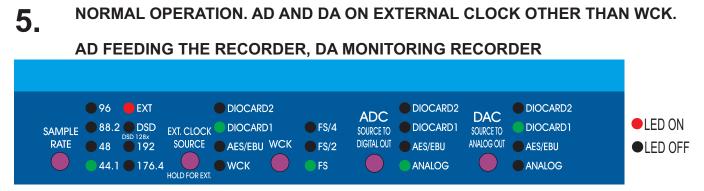
NORMAL OPERATION. AD AND DA ON EXTERNAL WORDCLOCK.

In this mode both the AD and DA run on an external clock. Holding the "Ext. Clock Source" button selects this mode. Although this mode does not provide the lowest jitter performance it might be desirable for systemic reasons. External recorders (such as DAW etc) can be synchronized to external wordclock sources OR AD digital outputs (any format: AES or DIOCARD1 or DIOCARD2) OR to converter Worclock output.

This example shows 44.1 PCM, but any FS can be selected, including DSD and 128xDSD. Also instead of AES any other digital input to DA can be selected depending on a particular system configuration.

The unit will output on its BNC Wordclock outs corresponding to the sampling frequency provided externally unless it's divided by using WCK button. If the DA converter receives no selected digital in OR this input is not synchronous with AD clock, the LED will flash and DA converter will mute. Sample Rate has to be selected manually to match wck or its nearest approximation. WCK will be the base of sampling rate. If no WCK source is detected, WCK LED will flash and the unit will not pass signal.

4. FEED THROUGH OPERATION. AD AND DA ON EXTERNAL CLOCK.


AD FEEDING DA DIRECTLY

3.

In this mode both the AD and DA run on an external clock. Although this mode does not provides the lowest jitter performance it might be desirable for systemic reasons. External recorders (such as DAW etc) can be synchronized to an external wordclock source OR AD digital outputs (any format: AES or DIOCARD1 or DIOCARD2) OR to a converters Worclock output. In this mode signal is fed from the AD to digital outputs and also to DA directly. This mode may be useful when conversion latency has to be minimized during the recording. It functionally corresponds to a multitrack tape machine always being on "input".

This example shows 44.1 PCM, but any FS can be selected, including DSD and 128xDSD. Also instead of AES any other digital input to DA can be selected depending on a particular system configuration.

The unit will output on its BNC outs a Wordclock signal corresponding to the sampling frequency provided externally, unless it's divided by using the WCK button. If the DA converter receives no selected digital in OR this input is not synchronous with AD clock, the LED will flash and DA converter will mute. The Sample Rate has to be selected manually to match wck or its nearest approximation. WCK will be the base of sampling rate. 13 If no WCK source is detected, the WCK LED will flash and the unit will not pass signal.

In this mode both the AD and DA run on an external clock. Although this mode does not provides the lowest jitter performance it might be desirable for systemic reasons. For example a second 8X192 unit running can be coupled with a master 8X192 unit via Firewire cable only. In this case the clock for the second unit is provided via a Firewire card (DIOCARD1 in this example). External recorders (such as DAW etc) can be either AD digital outputs (any format: AES or DIOCARD1 or DIOCARD2), converter Worclock outputs, or can run in asynchronous Firewire mode.

This example shows 44.1 PCM, but any FS can be any selected, including DSD and 128xDSD. Also instead of AES any other digital input to DA can be selected depending on a particular system configuration.

The unit will output on its BNC outs Wordclock corresponding to the sampling frequency provided externally unless it's divided by using WCK button. If the DA converter receives no selected digital in OR this input is not synchronous with AD clock, the LED will flash and DA converter will mute. The Sample Rate has to be selected manually to match wck or its nearest approximation. WCK will be the base of sampling rate. If no WCK source is detected, WCK LED will flash and unit will not pass signal.

FEED THROUGH OPERATION. AD AND DA ON INTERNAL CLOCK.

AD FEEDING DA DIRECTLY

6.

In this mode both the AD and DA run on an external clock. Although this mode does not provides the lowest jitter performance it might be desirable for systemic reasons. For example a second 8X192 unit running can be coupled with a master 8X192 unit via a Firewire cable only. In this case the clock for second unit is provided via Firewire card (DIOCARD1 in this example). External recorders (such as DAW etc) can be either AD digital outputs (any format: AES or DIOCARD1 or DIOCARD2), converter Worclock output, or can run in asynchronous Firewire mode. In this mode signal is fed from AD to digital outputs and also to DA directly. This mode may be usefull when conversion latency has to be minimized during the recording. It functionally corresponds to a multitrack tape machine always on"input".

This example shows 44.1 PCM, but any FS can be any selected, including DSD and 128xDSD. Also instead of AES any other digital input to DA can be selected depending on a particular system configuration.

The unit will output on its BNC outs Wordclock corresponding to the sampling frequency provided externally unless it's divided by using WCK button. If the DA converter receives no selected digital in OR this input is not synchronous with AD clock, the LED will flash and DA converter will mute. The Sample Rate has to be selected manually to match wck or its nearest approximation. WCK will be the base of sampling rate. If no WCK source is detected, WCK LED will flash and unit will not pass signal.

7. FORMAT CONVERSION OPERATION.

ADC IS OFF, DIGITAL IN TO DIGITAL OUT, DA MONITORING DIGITAL IN.

In this mode the 8X192 unit can be used for format conversion between all installed digital interfaces. Once a digital input is selected for "SOURCE TO DIGITAL", the "SAMPLE RATE" switch is disabled and EXT.CLOCK SOURCE and SOURCE TO ANALOG OUT automatically set to selected digital input. The incoming digital signal is converted to all available digital formats simultanouesly as well as is sent to DA converter for monitoring. The wck divider affects only WCK outs. WCK is derives from incoming digital input, in this example DIOCARD1.

Specifications ADC*

Conversion:	Linear, 1 Bit * 128x oversampling at 44.1-48kHz 64x oversampling at 88.2-192kHz, optional 64xDSD and 128xDSD	
Resolution:	24 bit, (or 1 bit DSD)	
Sample rates:	44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz or wordclock 25-200kHz	
Dynamic Range:	120dB A-weighted, 117dB Total	
THD+Noise:	-106dB (<0.0005%)	
Internal clock jitter:	<10picoseconds	
Analog Inputs:	+4dBm balanced or unbalanced, 10 kOhm	
Specifications DAC		
Conversion:	Linear, multibit delta-sigma PCM and 64xDSD and 128xDSD	
Resolution:	24 bit, (or 1 bit DSD)	
Sample rates:	44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz or wordclock 25-200kHz	
Dynamic Range:	123dB A-weighted, 120dB Total	
THD+Noise:	-110dB (<0.0004%)	
Internal clock jitter:	<10picoseconds	
Analog Outputs:+4dBm balanced or unbalanced, 75 Ohm		
Specifications Other		
Digital outputs: Hi-Speed AES/EBU built in up to 200k or dual wire for 4 chan operation Other formats on optional DIO Cards		
External Sync.: Wordclock in and out. or 256x Superclock		
Wordlock Out used as house clock:	15 LS TTL loads max. Can be terminated with 75 Ohm. 6 Outs	
Wordlock In	TTL/5V input- internally switchable termination 75 Ohm.	
Wordclock can be replaced by Superclock fiunction		
Mains:	100/115V-220/240V 50/60Hz switchable	
Weight, Dim::	14 pounds (7 kg), 1U x 19 inch x 10.5 inch deep	
* This ADC uses a 1 bit delta sigma modulator which achieves instristically better low level		

* This ADC uses a 1 bit delta sigma modulator which achieves instristically better low level linearity than the multibit counterparts. Although multibit ADC THD measurements are marginally better, the distribution of distortion subjectively sounds less desirable than in 1 bit converter which tends to exhibit certain silky quality. The same, currently worlds' highest performance 1 bit modulator is used to produce genuine 1 bit DSD signal.